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3.1. BASIC LAWS OF VECTOR ALGEBRA

This chapter departs from the study and analysis of electromag-
netic concepts where 1D scalar quantities was sufficient. Voltage,
current, time, and 1D position will continue to be quantities of inter-
est, but more is needed to prepare for future chapters.

In what lies ahead the vector field quantities E and H are of cen-
tral importance. To move forward with this agenda we will start with
a review of vector algebra, review of some analytic geometry, review
the orthogonal coordinate systems Cartesian (rectangular), cylindri-
cal, and spherical, then enter into a review of vector calculus. The
depth of this last topic will likely be more intense than any earlier
experiences you can remember.

3.1 Basic Laws of Vector Algebra

� The Cartesian coordinate system should be familiar to you from
earlier math and physics courses

� The vector A is readily written in terms of the cartesian unit
vectors Ox, Oy, and Oz

A D OxAx C OyAy C OzAz

� In linear algebra Ox, Oy, and Oz are known as basis vectors, each
having unit length, i.e., jOxj and mutually orthogonal

� Also, the length of A is

A D
q
A2x C A

2
y C A

2
z

and the unit vector in the A direction is

Oa D
A
A
D
OxAx C OyAy C OzAzq
A2x C A

2
y C A

2
z
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CHAPTER 3. VECTOR ANALYSIS

(a) Base vectors

(b) Components of A
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Figure 3-2 Cartesian coordinate system: (a) base
vectors x̂, ŷ, and ẑ, and (b) components of vector A.

Figure 3.1: Expressing the vector A in terms the Cartesian unit vec-
tors.

3.1.1 Equality of Two Vectors

� Vectors A and B are equal if their components are equal, i.e.,
Ax D Bx, etc.
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3.1. BASIC LAWS OF VECTOR ALGEBRA

3.1.2 Vector Addition and Subtraction

� Addition of vectors means that the individual components are
added together, that is

C D AC B
D Ox.Ax C Bx/C Oy.Ay C By/C Oz.Az C Bz/;

thus Cx D Ax C Bx, etc.

� Visually you can utilize the head-to-tail or parallelogram rules

A

B

C

(a) Parallelogram rule

A

B

C

(b) Head-to-tail rule

Figure 3-3 Vector addition by (a) the parallelogram rule
and (b) the head-to-tail rule.

Figure 3.2: Vector addition rules.

� Vector subtraction is similar

D D A � B
D Ox.Ax � Bx/C Oy.Ay � By/C Oz.Az � Bz/;

thus Dx D Ax � Bx, etc.
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CHAPTER 3. VECTOR ANALYSIS

3.1.3 Position and Distance Vectors

z2

y2

z1

y1

x1

x2

x

y

R1 R2

R12

z

P1 = (x1, y1, z1)

P2 = (x2, y2, z2)

O

Figure 3-4 Distance vector R12 =
−−→P1P2 = R2 −R1,

where R1 and R2 are the position vectors of points P1
and P2, respectively.

Figure 3.3: The notion of the position vector to a point, Pi , Ri , and
distance between, Pi and Pj , Rij are vectors.

� Formally a position vector starts at the origin, so we use the
notation

Ri D
��!
OPi D Oxxi C Oyyi C Ozzi

where xi , yi , and zi correspond to the point Pi D .xi ; yi ; zi/

� The scara distance between two points is just d D jRij j

d D

q
.xj � xi/2 C .yj � yi/2 C .zj � zi/2
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3.1. BASIC LAWS OF VECTOR ALGEBRA

3.1.4 Vector Multiplication

� Vector multiplication takes the form

– scalar � vector:

B D kA D element-by-element multiply by k

– scalar product or dot product:

A � B D AB cos �AB

where �AB is the angle between the vectors (as in linear
algebra)

– Note: A cos �AB is the component of A along B andB cos �AB
is the component of B along A

– Also,

A � A D jAj2 D A2

A D jAj D
p

A � A

– Using the inverse cosine

�AB D cos�1
�

A � B
p

A � A
p

B � B

�
– Finally,

A � A D AxBx C AyBy C AzBz

– Commutative and Distributive

A � B D B � A
A � .BC C/ D A � BC A � C
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CHAPTER 3. VECTOR ANALYSIS

� Vector product or cross product:

A � B D OnAB sin �AB

where On is a unit vector normal to the plane containing A and
B (see picture below for details)

(a) Cross product

(b) Right-hand rule

z

y

x

n B

A

θAB

A × B = n AB sin θABˆ

ˆ

B

A

A × B

Figure 3-6 Cross product A ××× B points in the
direction n̂, which is perpendicular to the plane
containing A and B and defined by the right-hand rule.

Figure 3.4: The cross product A � B and the right-hand rule.

– The cross product is anticommuntative

A � B D �B � A
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3.1. BASIC LAWS OF VECTOR ALGEBRA

– The cross product is distributive

A � .BC C/ D A � BC A � C

– To calculate use the determinant formula

A � B D

ˇ̌̌̌
ˇ̌ Ox Oy Oz
Ax Ay Az
Bx By Bz

ˇ̌̌̌
ˇ̌

D Ox.AyBz � AzBy/C Oy.AzBx � AxBz/
C Oz.AxBy � AyBx/

3.1.5 Scalar and Vector Triple Products

� Certain, make sense, vector products arise in electromagnetics

Scalar Triple Product

� Definition:

A � .B � C/ D B � .C � A/ D C � .A � B/

D

ˇ̌̌̌
ˇ̌Ax Ay Az
Bx By Bz
Cx Cy Cz

ˇ̌̌̌
ˇ̌

Vector Triple Product

� Definition
A � .B � C/

� Note:
A � .B � C/ ¤ .A � B/ � C/

3-9



CHAPTER 3. VECTOR ANALYSIS

� It can however be shown that

A � .B � C/ D B.A � C/ � C.A � B/;

which is known as the “bac-cab” rule

Example 3.1: Numpy for Vector Numerics

� To make things more convenient define the helper function
vec_fmt (see Chapter 3 Jupyter notebook)

Figure 3.5: Using Numpy for basic vector numerical calculations.
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3.1. BASIC LAWS OF VECTOR ALGEBRA

Figure 3.6: Using Numpy for more vector numerical calculations.
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CHAPTER 3. VECTOR ANALYSIS

Example 3.2: TI Nspire CAS

� The TI nspire CAS can do both numerical and symbolic calcu-
lations

� Numerical examples are given below

TI Nspire CAS: Portions of Text Example 3-1

Figure 3.7: Using the TI Nspire CAS for vector numerics.
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3.2. ORTHOGONAL COORDINATE SYSTEMS

3.2 Orthogonal Coordinate Systems

� There three orthogonal coordinate systems in common usage
in electromagnetics:

– The Cartesian or rectangular system: OxAx C OyAy C OzAz
– The cylindrical system: OrAr C O�A� C OzAz
– The spherical system: ORAR C O�A� C O�A�

Table 3.1: Vector relations in the three common coordinate systems.
Table 3-1 Summary of vector relations.

Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates

Coordinate variables x,y,z r,φ ,z R,θ ,φ
Vector representation A= x̂Ax+ ŷAy+ ẑAz r̂Ar + φ̂φφAφ + ẑAz R̂AR+ θ̂θθAθ + φ̂φφAφ
Magnitude of A |A| = +

√
A2x +A2y +A2z +

√
A2r +A2φ +A2z +

√
A2R+A2θ +A2φ

Position vector −→OP1 = x̂x1+ ŷy1+ ẑz1, r̂r1+ ẑz1, R̂R1,
for P(x1,y1,z1) for P(r1,φ1,z1) for P(R1,θ1,φ1)

Base vectors properties x̂ · x̂= ŷ · ŷ= ẑ · ẑ= 1 r̂ · r̂= φ̂φφ ·φ̂φφ = ẑ · ẑ= 1 R̂ · R̂= θ̂θθ ·θ̂θθ = φ̂φφ ·φ̂φφ = 1
x̂ · ŷ= ŷ · ẑ= ẑ · x̂= 0 r̂ ·φ̂φφ = φ̂φφ · ẑ= ẑ · r̂= 0 R̂ ·θ̂θθ = θ̂θθ ·φ̂φφ = φ̂φφ · R̂= 0

x̂××× ŷ= ẑ r̂××× φ̂φφ = ẑ R̂××× θ̂θθ = φ̂φφ
ŷ××× ẑ= x̂ φ̂φφ××× ẑ= r̂ θ̂θθ××× φ̂φφ = R̂
ẑ××× x̂= ŷ ẑ××× r̂= φ̂φφ φ̂φφ××× R̂= θ̂θθ

Dot product A ·B= AxBx+AyBy+AzBz ArBr+AφBφ +AzBz ARBR+AθBθ +AφBφ

Cross product A×××B=

∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣

∣∣∣∣∣∣

r̂ φ̂φφ ẑ
Ar Aφ Az
Br Bφ Bz

∣∣∣∣∣∣

∣∣∣∣∣∣

R̂ θ̂θθ φ̂φφ
AR Aθ Aφ
BR Bθ Bφ

∣∣∣∣∣∣

Differential length dl= x̂ dx+ ŷ dy+ ẑ dz r̂ dr+ φ̂φφr dφ + ẑ dz R̂ dR+ θ̂θθR dθ + φ̂φφRsinθ dφ
Differential surface areas dsx = x̂ dy dz

dsy = ŷ dx dz
dsz = ẑ dx dy

dsr = r̂r dφ dz
dsφ = φ̂φφ dr dz
dsz = ẑr dr dφ

dsR = R̂R2 sinθ dθ dφ
dsθ = θ̂θθRsinθ dR dφ
dsφ = φ̂φφR dR dθ

Differential volume dv= dx dy dz r dr dφ dz R2 sinθ dR dθ dφ

� The three systems are needed to best fit the problem geometry
at hand
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CHAPTER 3. VECTOR ANALYSIS

3.2.1 Cartesian Coordinates

� We will have need of differential quantities of length, area and
volume

Differential Length

d l D Oxdlx C Oydly C Ozdlz D Oxdx C Oydy C Ozdz

Differential Area

� A vector, d s, that is normal to the two coordinates describing
the scalar area ds

� There are three different differential areas, d s, to consider:

d sx D Ox dly dlz D Ox dy dz (y � z-plane)
d sy D Ox dx dz (x � z-plane)
d sz D Ox dx dy (x � y-plane)

Differential Volume

dV D dx dy dz
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3.2. ORTHOGONAL COORDINATE SYSTEMS

dsz = z dx dy

dsy = y dx dz

dsx = x dy dz

dx

dz

dy

dv = dx dy dz
dz

dy

dx

dl

z

y

x

ˆ

ˆ

ˆ

Figure 3-8 Differential length, area, and volume in
Cartesian coordinates.

Figure 3.8: Differential length, area, and volume.

3.2.2 Cylindrical Coordinates

� The cylindrical system is used for problems involving cylindri-
cal symmetry

� It is composed of: (1) the radial distance r 2 Œ0;1/, (2) the
azimuthal angle, � 2 Œ0; 2�/, and z 2 .�1;1/, which can
be thought of as height

� As in the case of the Cartesian system, Or; O�, and Oz are mutually
perpendicular or orthogonal to each other, e.g., Or � O� D 0, etc.

� Likewise the cross product of the unit vectors produces the
cyclical result

Or � O� D Oz; O� � Oz D Or; Oz � Or D O�
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x

φ1

φ

z

r

R1

z

yO

φ = φ1 plane

r = r1 cylinder

ˆ

ˆ
ˆr1

R1

P = (r1, φ1, z1)

z = z1 plane

z1

Figure 3-9 Point P(r1,φ1,z1) in cylindrical coordinates; r1 is the radial distance from the origin in the x–y plane, φ1 is the
angle in the x–y plane measured from the x axis toward the y axis, and z1 is the vertical distance from the x–y plane.

Figure 3.9: A point in the cylindrical system.

� The general vector expansion

A D OajAj D OrAr C O�A� C OzAz

is obvious, as is the scalar length

jAj D
q
A2r C A

2
� C A

2
z

� Looking at 3.9 it is interesting to note that O� is absent in the
position vector

��!
OP D Orr1 C Ozz1;

but is present in the point P.r1; �1; z1/ itself
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3.2. ORTHOGONAL COORDINATE SYSTEMS

dv = r dr dφ dz

drr dφ dsφ = ϕ dr dz

dsr = r r dφ dz

dz

dz

φ
r

dr r dφ

z

y

x

O

dsz = z r dr dφˆ

ˆ

ˆ

Figure 3-10 Differential areas and volume in
cylindrical coordinates.

Figure 3.10: Differential quantities in the cylindical system.

Differential Quantities

� The differential quantities do not follow from the Cartesian
system

� The differential length of the azimuthal component is also a
function of the radial component, i.e.,

dlr D dr; d l� D rd�; d lz D dz

� In the end
d l D Ordr C O�rd� C Ozdz
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CHAPTER 3. VECTOR ANALYSIS

� The differential surface follows likewise

d sr D Or r d� dz .� � z cylindrical surface/

d s� D O� dr dz .r � z plane/
d sz D Oz dr d� .r � � plane/

� The differential area is likely the most familiar from calculus

dV D r dr � dz

Example 3.3: Distance Vector from z-Axis to r � �-Plane

� When making field calculations due to charge or current along
a line, we need the distance vector shown below:

φ0 r0

P2 = (r0, φ0, 0)

P1 = (0, 0, h)

O

a

A

x

y

z

h

ˆ

Figure 3-11 Geometry of Example 3-3.Figure 3.11: Distance vector from z-axis to point in r � � plane.
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3.2. ORTHOGONAL COORDINATE SYSTEMS

� The vector from a point P1 on the z-axis, .0; 0; h/, to a point
P2 in the r�-plane, .r0; �0; 0/, is

A D
��!
OP 2 �

��!
OP 1 D Orr0 � Ozh

� The unit vector is

Oa D
Orr0 � Ozhq
r20 C h

2

Note: � is not present!

� Once � D �0 is specified the unambiguous point direction
resolved

Example 3.4: Volume of a Cylinder

� Consider a cylinder of height 2 cm and diameter 3 cm

� Using simple calculus, the surface area of the cylinder is

S D

Z 2

0

Z 2�

0

r d� dz

ˇ̌̌̌
rD3=2

D 6� (cm)2

� The volume of the cylinder is

V D
Z 3=2

0

Z 2

0

Z 2�

0

r d� dz dr D 4� �
r2

2

ˇ̌̌̌3=2
0

D
9�

2
(cm)3
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CHAPTER 3. VECTOR ANALYSIS

3.2.3 Spherical Coordinates

� In this coordinate system a single range variable R plus two
angle variables � and � are employed

θ1

R1

φ1

R

θ

y

z

x

θ = θ1 
conical
surface

P = (R1, θ1, φ1)

φ

φ̂

ˆ

ˆ

ˆ

Figure 3-13 Point P(R1,θ1,φ1) in spherical coordi-
nates.

Figure 3.12: The spherical coordinate system showing a point P1
and position vector OR1.

� It is composed of: (1) the radial distance r 2 Œ0;1/, (2) the
azimuthal angle (same as cylindrical), � 2 Œ0; 2�/, and the
zenith angle � 2 Œ0; ��, which is measured from the positive
z-axis

� All coordinates are again mutually orthogonal to span a 3D
space
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3.2. ORTHOGONAL COORDINATE SYSTEMS

� The cross product of the unit vectors produces the cyclical re-
sult

OR � O� D O�; O� � O� D OR; O� � OR D O�

� The general vector expansion

A D OajAj D ORAR C O�A� C O�A�

is obvious, as is the scalar length

jAj D
q
A2R C A

2
� C A

2
�

� The position vector R1 (3.12) is

R1 D
��!
OP D ORR1;

but needs knowledge of �1 and �1 to be complete

Differential Quantities

� The differential quantities are different yet again from the Cat-
estian and the cylindrical systems

� The differential length of the zenith component is like the az-
imuthal component in the cylindrical system

� The differential length of the azimuthal component is now a
function of both the radial component and the zenith compo-
nent, i.e.,

dlR D dR; dl� D Rd�; d l� D R sin �d�
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CHAPTER 3. VECTOR ANALYSIS

� In the end

d l D ORdr C O�Rd� C O�R sin �dz

� The differential surface follows

d sR D ORR2 sin � d� d� .� � � spherical surface/

d s� D O� R sin �dR d� .R � � conical plane/

d s� D O�RdRd� .R � � plane/

� Again the differential area is likely the most familiar from cal-
culus

dV D R2 sin � dR d� d�

dθ

R dθ

dφ

R

dR

y

z

x

R sin θ dφ

dν = R2 sin θ dR dθ dφ

θ

φ

Figure 3-14 Differential volume in spherical coordi-
nates.

Figure 3.13: The spherical coordinate differential volume.

3-22



3.2. ORTHOGONAL COORDINATE SYSTEMS

Example 3.5: Preview of Chapter 4 - A Charge density

� A volume charge density

�v D 4 cos2 � .C/m3/

is present in a sphere of radius 2 cm

� To find the total charge in the sphere we integrate the charge
density over the volume

Q D

Z
V
�v dV

D

Z 2�

�D0

Z �

�D0

Z 0:02

RD0

�
4 cos2 �

�
R2 sin � dR d� d�

D 4

Z 2�

0

Z �

0

�
R3

3

� ˇ̌̌̌0:02
0

sin � cos2 � d� d�

D
32

3
� 10�6

Z 2�

0

�
�

cos3 �
3

� ˇ̌̌̌�
0

d�

D
64

9
� 10�6

Z 2�

0

d� D
128�

9
� 10�6

D 44:68 .�C/

Just a little calculus review, especially the anti-derivative of
sin � cos2 �
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CHAPTER 3. VECTOR ANALYSIS

3.3 Coordinate Transformations

� Overview of the various transformations: .x; y; x/ , .r; �; z/,
.x; y; z/ , .R; �; �/, and .r; �; z/ , .R; �; �/

Table 3.2: Coordinate transformations.
Table 3-2 Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components

Cartesian to r = +
√
x2+ y2 r̂= x̂cosφ + ŷsinφ Ar = Ax cosφ +Ay sinφ

cylindrical φ = tan−1(y/x) φ̂φφ = −x̂sinφ + ŷcosφ Aφ = −Ax sinφ +Ay cosφ
z= z ẑ= ẑ Az = Az

Cylindrical to x= rcosφ x̂= r̂cosφ − φ̂φφsinφ Ax = Ar cosφ −Aφ sinφ
Cartesian y= r sinφ ŷ= r̂sinφ + φ̂φφcosφ Ay = Ar sinφ +Aφ cosφ

z= z ẑ= ẑ Az = Az
Cartesian to R= +

√
x2+ y2+ z2 R̂= x̂sinθ cosφ AR = Ax sinθ cosφ

spherical + ŷsinθ sinφ + ẑcosθ +Ay sinθ sinφ +Az cosθ
θ = tan−1[ +

√
x2+ y2/z] θ̂θθ = x̂cosθ cosφ Aθ = Ax cosθ cosφ

+ ŷcosθ sinφ − ẑsinθ +Ay cosθ sinφ −Az sinθ
φ = tan−1(y/x) φ̂φφ = −x̂sinφ + ŷcosφ Aφ = −Ax sinφ +Ay cosφ

Spherical to x= Rsinθ cosφ x̂= R̂sinθ cosφ Ax = AR sinθ cosφ
Cartesian + θ̂θθcosθ cosφ − φ̂φφsinφ +Aθ cosθ cosφ −Aφ sinφ

y= Rsinθ sinφ ŷ= R̂sinθ sinφ Ay = AR sinθ sinφ
+ θ̂θθcosθ sinφ + φ̂φφcosφ +Aθ cosθ sinφ +Aφ cosφ

z= Rcosθ ẑ= R̂cosθ − θ̂θθsinθ Az = AR cosθ −Aθ sinθ
Cylindrical to R= +

√
r2+ z2 R̂= r̂ sinθ + ẑcosθ AR = Ar sinθ +Az cosθ

spherical θ = tan−1(r/z) θ̂θθ = r̂cosθ − ẑsinθ Aθ = Ar cosθ −Az sinθ
φ = φ φ̂φφ = φ̂φφ Aφ = Aφ

Spherical to r = Rsinθ r̂= R̂ sinθ + θ̂θθcosθ Ar = AR sinθ +Aθ cosθ
cylindrical φ = φ φ̂φφ = φ̂φφ Aφ = Aφ

z= Rcosθ ẑ= R̂cosθ − θ̂θθsinθ Az = AR cosθ −Aθ sinθ

� There are three aspects of each to and from coordinate trans-
formations:

1. The coordinate variables – .x; y; z/, .r; �; z/, and .R; �; �/

2. The unit vectors – .Ox; Oy; Oz/, .Or; O�; Oz/, and . OR; O�; O�/

3. The vector components – .Ax; Ay; Az/, .Ar ; A�; Az/, and
.AR; A� ; A�/
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3.3. COORDINATE TRANSFORMATIONS

3.3.1 Cartesian to Cylindrical Transformations

� This is the most obvious and most familiar

r D
p
x2 C y2; � D tan�1

�y
x

�
(watch the quadrant)

x D r cos�; y D r sin�
z D z

z

x

y

φ r

P(x, y, z)

z

y = r sin φ

x = r cos φ
123 1

2
3

Figure 3-16 Interrelationships between Cartesian
coordinates (x,y,z) and cylindrical coordinates (r,φ ,z).

Figure 3.14: Cartesian and cylindrical variable relationships.

r

r

x

y

ϕ

ϕ

ϕ̂

ˆ
ˆ

y

x

ˆ

ˆ
−ϕ

Figure 3-17 Interrelationships between base vectors
(x̂, ŷ) and (r̂,φ̂φφ).

Figure 3.15: Cartesian and cylindrical unit vector relationships.
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CHAPTER 3. VECTOR ANALYSIS

3.3.2 Cartesian to Spherical Transformations

� These are less familiar, but very useful in this course

R D
p
x2 C y2 C z2; � D tan�1

 p
x2 C y2

z

!
� D tan�1

�y
x

�
(watch the quadrants)

x D R sin � cos�; y D R sin � sin�
z D R cos �

z

x

y = r sin φ 

x = r cos φ

z = R cos θ 

y

R

r

z
R

(π/2 – θ)

r

φ

φ̂

ˆ

r̂

θ

θ
ˆ

ˆ

Figure 3-18 Interrelationships between (x,y,z) and
(R,θ ,φ).

Figure 3.16: Cartesian and spherical variable and unit vector rela-
tionships.
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3.3.3 Cylindrical to Spherical Transformations

� See Table 3.2

R D
p
r2 C z2; � D tan�1.r=z/; � D �

r D R sin �; � D �; z D R sin �

3.3.4 Distance Between Two Points

� The distance between two points, P1 D .x1; y1; z1/ and P2 D
.x2; y2; z2/, arises frequently

� In Cartesian coordinates the answer is obvious

d D jR12j D
�
.x2 � x1/

2
C .y2 � y1/

2
C .z2 � z1/

2
�

� For the case of cylindrical coordinates we apply the variable
transformations to arrive at

d D
�
.r2 cos�2 � r1 cos�1/2 C .r2 sin�2 � r1 sin�1/2

C .z2 � z1/
2
�1=2

D
�
r22 C r

2
1 � 2r1r2 cos.�2 � �1/C .z2 � z1/2

�1=2
� Finally, for the spherical coordinates

d D
˚
R22 CR

2
1 � 2R1R2Œcos �2 cos �1

C sin �2 sin �1 cos.�2 � �1/�
	1=2
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3.4 Gradient of a Scalar Field

� In this section we deal with the rate of change of a scalar quan-
tity with respect to position in all three coordinates .x; y; z/

� The result will be a vector quantity as the maximum rate of
change of the scalar quantity will have direction

– Think of skiing down a mountain; if you want to descend
as quickly as possible you ski the path the follows the
negative of the maximum rate of change in elevation

– The route corresponds to the negative of the gradient

� Suppose T represent the scalar variable of temperature in a
material as a function of .x; y; z/

� The gradient of temperature T is written as

rT D grad T D Ox
@T

@x
C Oy

@T

@y
C Oz

@T

@z

� Note: A differential change in the distance vector d l dotted
with the gradient gives the scalar change in temperature, dT ,
i.e.

dT D rT � d l
D rT �

�
Ox dx C Oy dy C Oz dz

�
D
@T

@x
dx C

@T

@y
dy C

@T

@z
dz

3-28



3.4. GRADIENT OF A SCALAR FIELD

� As an operator we can write the so-called del operator in Carte-
sian coordinates as

r D Ox
@

@x
C Oy

@

@y
C Oz

@

@z

Directional Derivative

� In calculus you learn about the directional derivative

dT

dl
D rT � Oal

as the derivative of T along Oa, which is the unit vector of the
differential distance ddl D Oaldl

� A nice extension is to find the difference T2� T1, which corre-
sponds to points P1 D .x1; y1; z1/ and P2 D .x2; y2; z2/

� We integrate both side of the directional derivative definition
to obtain

T2 � T1 D

Z P2

P1

rT � d l

Example 3.6: Directional Derivative of T D x2 C y2z

� We seek the directional derivative of T along the direction Ox2C
Oy3 � Oz2 evaluated at .1;�1; 2/

� Start by finding the gradient

rT D Ox 2x C Oy 2yz C Ozy2
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� Note that
l D Ox2C Oy3 � Oz2;

so
Oal D

Ox2C Oy3 � Oz2
p
17

� The directional derivative is
dT

dl
D
�
Ox 2x C Oy 2yz C Ozy2

�
�

�
Ox2C Oy3 � Oz2
p
17

�
D
4x C 6yz � 2y2

p
17

;

� At the point .1;�1; 2/ we finally have
dT

dl

ˇ̌̌̌
.1;�1;2/

D
�10
p
17
D �0:588

dT/dl

dT/dl

dT/dl

The point
(1, -1, 2)

The surface is
dT/dl at z = 2

Figure 3.17: The directional derivative, dT=dl , as a surface over
.x; y/ with z fixed at 2.
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3.4. GRADIENT OF A SCALAR FIELD

3.4.1 Gradient Operator in Cylindrical and Spher-
ical Coordinates

� To move forward with the expressing gradient in the other two
coordinate systems, requires a bit of calculus

� For cylindrical coordinates it can be shown that

r D Or
@

@r
C O�

1

r

@

@�
C Oz

@

@z

� For spherical coordinates it can be shown that

r D OR
@

@R
C O�

1

R

@

@�
C O�

1

R sin �
@

@�

3.4.2 Properties of the Gradient Operator

� From basic calculus it follows that

r
�
U C V

�
D rU CrV

r
�
UV

�
D U rU C V rU

rV n
D nV n�1

rV; for any n

Example 3.7: Gradiant of V

� Consider the scalar function

V D x2y C xy2 C xz2

� The gradient is simply

rV D Ox.2xy C y2 C z2/C Oy.x2 C 2xy/C Oz.2xz/
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� At the point P1 D .1;�1; 2/ the gradiant vector is

rV.1;�1; 2/ D Ox3 � OyC Oz4

3.5 Divergence of a Vector Field

� The divergence of a vector field is in a sense complementary
to the gradient:

Gradient of a scalar function) Vector function
Divergence of a vector function) Scalar function

� So what is it? Take a look at https://en.wikipedia.org/
wiki/Divergence

� For a 3D vector field it measures the extent to which the vector
field behaves as a source or sink

� A 3D field has field lines and corresponding flux density, which
defines the outward flux crossing a unit surface ds

– For the EE: Consider a point charge Cq; if we place a
sphere (infinitesimally small) around it, there will be a
net flow of flux over the surface of the sphere; move the
sphere away from the charge location and the net flow of
flux (in/out) is zero

– For the ME: Consider heating or cooling of air in a re-
gion; the velocity of the air, which is influenced by the
heating, is a vector field; the velocity points outward from
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3.5. DIVERGENCE OF A VECTOR FIELD

the heated region just like the electric field from the Cq
charge

Imaginary
spherical
surface

+q

n̂

E

Figure 3-20 Flux lines of the electric field E due to a
positive charge q.

Figure 3.18: The electric field flux lines due to a point charge Cq
are normal to a sphere ( On) centered on the charge.

� In more detail the Cq charge produces flux density (outward
flux crossing a unit surface)

Flux density of E D
E � ds

jdsj
D E � On

where ds includes the orientation of the surface via s and the
dot product insures that only the flux normal to the surface
is accounted for; On is the outward normal to the surface, i.e.,
ds=jdsj
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� The total flux crossing a closed surface S (e.g., a sphere) is

Total flux D
I
S

E � d Os

� For a general vector field, say E.x; y; z/OxEx C OyEy C OzEz,
we can sum the outward flux through each of the faces of a
differential cube as shown in Figure3.18

ˆ

(x, y + Δy, z)

(x + Δx, y, z)

(x, y, z + Δz)

Δy

Δz

Δx

y

x

z

E

E

E

n3

n̂2n̂1

n̂4

Face 3

Face 1 Face 2

Face 4

(x, y, z)

Figure 3-21 Flux lines of a vector field E passing
through a differential rectangular parallelepiped of
volume ∆v= ∆x ∆y ∆z.

Figure 3.19: Detailing divergence by considering the flux exiting the
six faces of a differential cube (parallelpiped).

� In the end we haveI
S

E � ds D

�
@Ex

@x
C
@Ey

@y
C
@Ez

@z

�
D
�
divE

�
�V
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3.5. DIVERGENCE OF A VECTOR FIELD

� Now, we take the limit as �V ! 0 to obtain the formal defini-
tion of divergence

r � E D div E D
@Ex

@x
C
@Ey

@y
C
@Ez

@z

� If r � E > 0 a source if present, while r � E < 0 means a sink
is present, and r � E D 0 means the field is divergenceless

Divergence Theorem

� Moving forward into Chapter 4 we will quickly bump into the
divergence theorem, which states thatZ

V
r � E dV D

I
S

E � ds

Example 3.8: Divergence in Cartesian Coordinates

� Consider E D Ox3x2C Oy2zC Ozx2z at the point P1 D .2;�2; 0/

� Using the definition in Cartesian coordinates

r � E D
@3x2

@x
C
@2z

@y
C
@x2z

@z

D 6x C 0C x2 D x2 C 6x

� Evaluating at .2;�2; 0/ we have

r � E

ˇ̌̌̌
.2;�2;0/

D 16
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� The positive diverge at .2;�2; 0/ can be seen in a 3D vector
slice plot from Mathematica

Out[50]=

Figure 3.20: 3D vector field plot from Mathematica with a cut-
sphere centered at .2;�2; 0/; the positive divergence is clear.
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Example 3.9: Divergence in Spherical Coordinates

� Working a diverge calculation in cylindical or spherical re-
quires the formulas inside the back cover of the text

� For the problem at hand we have

E D OR.a3 cos �=R2/ � O�.a3 sin �=R2/;

which is in spherical coordinates

� Find the divergence at P2 D .a=2; 0; �/

r � E D
1

R2
@

@R

�
R2ER

�
C

1

R sin �
@

@�

�
E� sin �

�
C

1

R sin �
@E�

@�

D
1

R2
@

@R

�
a3 cos �

�
C

1

R sin �
@

@�

 
�
a3 sin2 �
R2

!

D �
2a3 cos �
R3

� At the point .a=2; 0; �/ we have

r � E

ˇ̌̌̌
.a=2;0;�/

D �16

� Since the divergence is negative at this point, we conclude that
a field sink is present

� A 2D vector plot (Python, Mathematica, or MATLAB) can be
used to review the field behavior using arrows
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Out[64]=

4.0 4.5 5.0 5.5 6.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R

θ

a = 10

Figure 3.21: 2D vector field plot for a D 10 in just the R and � axes
making the negative divergence at .5; 0; �/ clear.
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Example 3.10: Ulaby 3.44b

� Each of the following vector fields is displayed below in the
form of a vector representation. Determine r � A analytically
and then compare the results with your expectations on the ba-
sis of the displayed pattern.

� Worked using the Jupyter notebook (screen shots)

Figure 3.22: Ulaby problem 3.44b set-up in the Jupyter notebook.
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Figure 3.23: Ulaby problem 3.44b vector (quiver) plot in Jupyter
notebook to verify divegence of zero.

3.6 Curl of a Vector Field

� Moving forward, the next vector operator, Curl, applies more
often to magnetic fields; See https://en.wikipedia.org/

wiki/Curl_(mathematics)

� The Curl describes the rotation of a 3D field, in an infinitesimal
sense
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3.6. CURL OF A VECTOR FIELD

� A field B has circulation if the line integral

Circulation D
I
C

B � d l ¤ 0

� For the case of a uniform field, e.g., B D OxB0, forming a line
integral around a closed rectangular contour in the x�y plane
yields zero, i.e.,

Circulation D
Z b

a

OxB0 � Ox dx C
Z c

b

OxB0 � Oy dy

C

Z d

c

OxB0 � Ox dx C
Z a

d

OxB0 � Oy dy

D B0 �x � B0 �x D 0

� Futhermore, a small fictitious paddle wheel placed in the uni-
form field will not rotate, no matter the orientation of the wheel
rotation axis

(a) Uniform field

(b) Azimuthal field

B

a d

y

x

b c

Δx Δx

Contour C

r

B

Current I

z

Contour C

y

x

φ

φ̂

Figure 3-22 Circulation is zero for the uniform field
in (a), but it is not zero for the azimuthal field in (b).

Figure 3.24: A uniform field, B D OxB0 with circulation over C zero.
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� Consider the azimuthal field of a wire carrying current I along
the z-axis

� The magnetic flux in thex � y plane follows O� with strength
�0I=.2�r/

� To compute the circulation we consider differential length d l D
O�r d� and determine the circulation to be

Circulation D
Z 2�

0

O�
�0I

2�r
� O�r d� D �0I

� Clearly a paddle wheel placed in this field will rotate!
(a) Uniform field

(b) Azimuthal field

B

a d

y

x

b c

Δx Δx

Contour C

r

B

Current I

z

Contour C

y

x

φ

φ̂

Figure 3-22 Circulation is zero for the uniform field
in (a), but it is not zero for the azimuthal field in (b).

Figure 3.25: An azimuthal field, B D O��0I=.2�r/ with circulation
around the z-axis.
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� Finally we cab defined curl as

r � B D curl B D lim
�s!0

1

�s

�
On
I
C

B � d l

�
max

� Note: The contour C is oriented to given the maximum circu-
lation; position the paddle wheel so it spins the fastest

� Since r � B is a vector, its direction is On, the unit normal of
surface �s (use the right-hand rule with the fingers curling in
the direction of C and the thumb pointing along On)

� In rectangular coordinates we compute the curl via

r � B D

ˇ̌̌̌
ˇ̌̌ Ox Oy Oz
@
@x

@
@y

@
@z

Bx By Bz

ˇ̌̌̌
ˇ̌̌

� For other coordinate systems consult the back page of the text

Stoke’s Theorem

� Stoke’s theorem converts a surface integral of the curl to a line
integral of a vector along a contour C bounding surface SZ

S

�
r � B

�
� ds D

I
C

B � d l
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3.7 Laplacian Operator

� The Laplacian operator shows up in a number of contexts

� The text mentions the divergence of the gradiant, .r � .rV //
as one possibility

� The result is known as del square

r
2V D

@2V

@x2
C
@2V

@y2
C
@2V

@z2

� In Chapter 4 Laplace’s equation, r2V D 0, arises when deter-
mining the electrostatic potential in 1D, 2D, and 3D problems
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